Vertex-oblique graphs

نویسندگان

  • Jens Schreyer
  • Hansjoachim Walther
  • Leonid S. Melnikov
چکیده

Let x be a vertex of a simple graph G. The vertex-type of x is the lexicographically ordered degree sequence of its neighbors. We call the graph G vertex-oblique if there are no two vertices in V (G) which are of the same vertex-type. We will show that the set of vertex-oblique graphs of arbitrary connectivity is infinite. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dually vertex-oblique graphs

A vertex with neighbours of degrees d1 ≥ · · · ≥ dr has vertex type (d1, . . . , dr). A graph is vertex-oblique if each vertex has a distinct vertex-type. While no graph can have distinct degrees, Schreyer, Walther and Mel’nikov [Vertex oblique graphs, same proceedings] have constructed infinite classes of super vertex-oblique graphs, where the degree-types of G are distinct even from the degre...

متن کامل

Oblique Graphs

The main issue of this work is to investigate asymmetric structures in graphs. While symmetry structures in graphs are well observed, the opposite question has not been investigated deeply so far. It is known from a theorem of Wright, that almost all graphs are asymmetric. The class of asymmetric graphs is restricted further by forbidding even local symmetries. The main question is to determine...

متن کامل

Vertex Removable Cycles of Graphs and Digraphs

‎In this paper we defined the vertex removable cycle in respect of the following‎, ‎if $F$ is a class of graphs(digraphs)‎ ‎satisfying certain property‎, ‎$G in F $‎, ‎the cycle $C$ in $G$ is called vertex removable if $G-V(C)in in F $.‎ ‎The vertex removable cycles of eulerian graphs are studied‎. ‎We also characterize the edge removable cycles of regular‎ ‎graphs(digraphs).‎    

متن کامل

Some results on vertex-edge Wiener polynomials and indices of graphs

The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...

متن کامل

Constructing vertex decomposable graphs

‎Recently‎, ‎some techniques such as adding whiskers and attaching graphs to vertices of a given graph‎, ‎have been proposed for constructing a new vertex decomposable graph‎. ‎In this paper‎, ‎we present a new method for constructing vertex decomposable graphs‎. ‎Then we use this construction to generalize the result due to Cook and Nagel‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 307  شماره 

صفحات  -

تاریخ انتشار 2007